
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 09 – Functions

www.umbc.edu

Last Class We Covered

• The string data type

–Built-in functions

• Miscellaneous details

– Constants

– Boolean flags in while loops

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn why you would want to divide your code
into smaller, more specific pieces (functions!)

• To be able to define new functions in Python

• To understand the details of function calls and
parameter passing in Python

• To use functions to reduce code duplication and
increase program modularity

4

www.umbc.edu

Control Structures (Review)

• A program can proceed:

– In sequence

– Selectively (branching): make a choice

–Repetitively (iteratively): looping

–By calling a function

5

focus of
today’s lecture

www.umbc.edu6

Introduction to Functions

www.umbc.edu

Functions We’ve Seen

• We’ve actually seen (and used) two
different types of functions already!

• Built-in Python functions

– For example: print(), input(), casting, etc.

• Our program’s code is contained completely
inside the main() function

– A function that we created ourselves

7

www.umbc.edu

Parts of a Function

def main():

a = 5

print(a)

print(type(a))

main()

8

calls “print” functionfunction
body

use “def” to
create a function

calls “type” function

calls “main” function

www.umbc.edu

Why Use Functions?

• Functions reduce code duplication and make
programs more easy to understand and maintain

• Having identical (or similar) code in more than
one place has various downsides:

1. Have to write the same code twice (or more)

2. Must be maintained in multiple places

3. Hard to understand big blocks of code everywhere

9

www.umbc.edu

What are Functions?

• A function is like a subprogram

–A small program inside of a program

• The basic idea:

–We write a sequence of statements

–And give that sequence a name

–We can then execute this sequence at any
time by referring to the sequence’s name

10

www.umbc.edu

When to Use Functions?

• Functions are used when you have a block of
code that you want to be able to:

–Write once and be able to use again
• Example: getting input from the user

–Call multiple times at different places
• Example: printing out a menu of choices

–Change a little bit when you call it each time
• Example: printing out a greeting to different people

11

www.umbc.edu

Function Vocabulary

• Function definition:

– The part of the program that creates a function

– For example: “def main():” and the lines of
code that are indented inside of def main():

• Function call:

– When the function is used in a program

– For example: “main()” or “print("Hello")”

12

www.umbc.edu13

Function Example

www.umbc.edu

Note: Toy Examples

• The example we’re going to look at today
is something called a toy example

• It is purposefully simplistic (and kind
of pointless) so you can focus on:

– The concept being taught

– Not how the code itself works

• Sadly, it has nothing to do with actual toys

14 Image from pixabay.com

www.umbc.edu

“Happy Birthday” Program

• Happy Birthday lyrics…
def main():

print("Happy birthday to you!")

print("Happy birthday to you!")

print("Happy birthday, dear Maya...")

print("Happy birthday to you!")

main()

• Gives us this…

15

bash-4.1$ python birthday.py

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Maya...

Happy birthday to you!

www.umbc.edu

Simplifying with Functions

• Most of this code is repeated (duplicate code)
print("Happy birthday to you!")

• We can define a function to print out that line
def happy():

print("Happy birthday to you!")

• Let’s update our program to use this function

16

www.umbc.edu

Updated “Happy Birthday” Program

• The updated program:
def happy():

print("Happy birthday to you!")

def main():

happy()

happy()

print("Happy birthday, dear Maya...")

happy()

main()

17

www.umbc.edu

More Simplifying

• This clutters up our main function, though

• We could write a separate function that sings
“Happy Birthday” to Maya, and call it in main()

def singMaya():

happy()

happy()

print("Happy birthday, dear Maya...")

happy()

18

www.umbc.edu

New Updated Program

• The new updated program:
def happy():

print("Happy birthday to you!")

def singMaya():

happy()

happy()

print("Happy birthday, dear Maya...")

happy()

def main():

singMaya() # sing Happy Birthday to Maya

main()

19

www.umbc.edu

Updated Program Output

bash-4.1$ python birthday.py

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Maya...

Happy birthday to you!

20

Notice that despite all the changes
we made to the code, the output is
still exactly the same as before

www.umbc.edu

Someone Else’s Birthday

• Creating this function saved us a lot of typing!

• What if it’s Luke’s birthday?

– We could write a new singLuke() function!

def singLuke():

happy()

happy()

print("Happy birthday, dear Luke...")

happy()

21

www.umbc.edu

“Happy Birthday” Functions
def happy():

print("Happy birthday to you!")

def singMaya():

happy()

happy()

print("Happy birthday, dear Maya...")

happy()

def singLuke():

happy()

happy()

print("Happy birthday, dear Luke...")

happy()

def main():

singMaya() # sing Happy Birthday to Maya

print() # empty line between the two (take a breath!)

singLuke() # sing Happy Birthday to Luke

main()

22

www.umbc.edu

Updated Program Output
bash-4.1$ python birthday2.py

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Maya...

Happy birthday to you!

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Luke...

Happy birthday to you!

23 Image from pixabay.com

www.umbc.edu

Multiple Birthdays

• This is much easier to read and use!

• But… there’s still a lot of code duplication

• The only difference between singMaya()
and singLuke() is what?

– The name in the third print() statement

• We could combine these two functions into
one by using something called a parameter

24

www.umbc.edu25

Function Parameters

www.umbc.edu

What is a Parameter?

• A parameter is a variable that is initialized
when we call a function

• We can create a sing() function that takes
in a person’s name (a string) as a parameter

def sing(name):

happy()

happy()

print("Happy birthday, dear", name, "...")

happy()

26

parameter

www.umbc.edu

“Happy Birthday” with Parameters
def happy():

print("Happy birthday to you!")

def sing(name):

happy()

happy()

print("Happy birthday, dear", name, "...")

happy()

def main():

sing("Maya")

print()

sing("Luke")

main()

27

www.umbc.edu

“Happy Birthday” with Parameters
def happy():

print("Happy birthday to you!")

def sing(name):

happy()

happy()

print("Happy birthday, dear", name, "...")

happy()

def main():

sing("Maya")

print()

sing("Luke")

main()

28

parameter passed in parameter
being used

function call with parameter

function call with parameter

www.umbc.edu

Updated Program Output
bash-4.1$ python birthday3.py

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Maya...

Happy birthday to you!

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Luke...

Happy birthday to you!

29

This looks the
same as before!

That’s fine! We
wanted to make our
code easier to read
and use, not change

the way it works.

www.umbc.edu

Exercise: Prompt for Name

• How would we update the code in main() to
ask the user for the name of the person?

– Current code looks like this:

def main():

sing("Maya")

main()

30

www.umbc.edu

Solution: Prompt for Name

• How would we update the code in main() to
ask the user for the name of the person?

– Updated code looks like this:

def main():

birthdayName = input("Whose birthday? ")

sing(birthdayName)

main()

31

Nothing else needs to change – and the
sing() function stays the same

www.umbc.edu

Exercise Output

bash-4.1$ python birthday4.py

Whose birthday? UMBC

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear UMBC...

Happy birthday to you!

32

www.umbc.edu33

How Parameters Work

www.umbc.edu

Functions and Parameters

• Each function is its own little subprogram

–Variables used inside of a function
are local to that function

– Even if they have the same name as
variables that appear outside that function

• The only way for a function to see a variable
from outside itself is for that variable to be
passed as a parameter

34

www.umbc.edu

Function Syntax with Parameters

• A function definition looks like this:

def fxnName(formalParameters):

body of the function

35

function name: follows same
syntax rules as variable names

(no special characters, can’t start
with a number, no keywords, etc.)

the formal parameters that the
function takes in – can be empty!

www.umbc.edu

Formal Parameters

• The formal parameters, like all variables used
in the function, are only accessible in the body
of the function

• Variables with identical names elsewhere in
the program are distinct from those inside the
function body

–We call this the “scope” of a variable

36

www.umbc.edu

• If variables are boxes, then passing
actual parameters entails

– Making a new box

– Copying the contents over

– Sending it to the called function

37

Scope: Passing Parameters

Images from pixabay.com

www.umbc.edu

• If variables are boxes, then passing
actual parameters entails

– Making a new box

– Copying the contents over

– Sending it to the called function

• Each function is its own separate
desert island, with its own variables
(boxes that can hold unique values)

38

Scope: Passing Parameters

Images from pixabay.com

www.umbc.edu

Example of Scope

• This is our president, Freeman A. Hrabowski III

– According to Wikipedia, he is a “a prominent
American educator, advocate, and mathematician”
and has been the President of UMBC since 1992

– He will also take you
up to the roof of the
Admin building to
show off the campus
(it’s super cool)

39

www.umbc.edu

Example of Scope

• This is my (fictional) dog, a Chesapeake Bay
Retriever also named Hrabowski

–He is super cute, can “sit” and
“fetch,” and his favorite toy
is a squeaky yellow duck

–He also loves to spin in
circles while chasing his tail

40 Image from pixabay.com

www.umbc.edu

Example of Scope

• We have two very different things, both of
which are called Hrabowski:

– UMBC’s President Hrabowski

– My (fictional) dog Hrabowski

• If you go outside this classroom and tell
someone “Hrabowski loves to chase his tail,
it’s super cute” they will be very confused

41

www.umbc.edu

Example of Scope

• In the same way, a variable called name inside
the function sing() is a completely different
variable from name in main()

• The sing() function has one idea of what the
name variable is, and main() has another

• It depends on the context, or “scope” we are in

42

www.umbc.edu43

Calling Functions with
Parameters

www.umbc.edu

Calling with Parameters

• In order to call a function with parameters,
use its name followed by a list of variables

myFunction("my string", numVar)

• These variables are the actual parameters, or
arguments, that are passed to the function

44

www.umbc.edu

Code Trace: Parameters
def happy():

print("Happy birthday to you!")

def sing(name):

happy()

happy()

print("Happy birthday, dear", name, "...")

happy()

def main():

sing("Maya")

print()

sing("Luke")

main()

45

actual parameter

actual parameter

formal parameter

www.umbc.edu

Python and Function Calls

• When Python comes to a function call, it
initiates a four-step process:
1. The calling program suspends execution

at the point of the call

2. The formal parameters of the function
get assigned the values supplied by the
actual parameters in the call

3. The body of the function is executed

4. Control is returned to the point just after
where the function was called

46

www.umbc.edu

Code Trace: Parameters

• Let’s trace through the following code:
sing("Maya")

print()

sing("Luke")

• When Python gets to the line sing("Maya"),
execution of main is temporarily suspended

• Python looks up the definition of sing() and
sees it has one formal parameter, name

47

www.umbc.edu

Initializing Formal Parameters

• The formal parameter is assigned the value of
the actual parameter

• When we call sing("Maya"), it as if the
following statement was executed in sing()

name = "Maya"

48

www.umbc.edu

Code Trace: Parameters

• Next, Python begins executing the
body of the sing() function

– First statement is another function call, to
happy() – what does Python do now?

– Python suspends the execution of sing()
and transfers control to happy()

– The happy() function’s body is a single
print() statement, which is executed

– Control returns to where it left off in sing()

49

www.umbc.edu

Code Trace: Parameters

• Execution continues in this way with
two more “trips” to the happy() function

• When Python gets to the end of sing(),
control returns to...

–main(), which picks up...

–where it left off, on the line immediately
following the function call

50

www.umbc.edu

Visual Code Trace

51

def main():

sing("Maya")

print()

sing("Luke")

def sing(name):

happy()

happy()

print("Happy BDay", name)

happy()

"Maya"

name: "Maya"

def happy():

print("Happy BDay to you!")

Note that the name
variable in sing()
disappeared after we
exited the function!

www.umbc.edu

Local Variables

• When a function exits, the local variables (like
name) are deleted from memory

• If we call sing() again, a new name variable
will have to be re-initialized

– Local variables do not retain their
value between function calls

52

www.umbc.edu

Code Trace: Parameters

• Next statement in main() is the empty call to
print(), which simply produces a blank line

• Python sees another call to sing(), so...

– It suspends execution of main(), and...

– Control transfers to…

the sing() function

– With the actual parameter...

"Luke"
53

www.umbc.edu

Visual Code Trace

54

def main():

sing("Maya")

print()

sing("Luke")

def sing(name):

happy()

happy()

print("Happy BDay", name)

happy()

"Luke"

name: "Luke"

• The body of sing() is executed with
the argument "Luke"

– Including its three side trips to happy()

• Control then returns to main()

www.umbc.edu55

Island Example

www.umbc.edu

1. Function sing() is called

a. Make copy of name variable

b. Pass copy of name variable

56

name =
"Maya"

name =
"Maya"

Images from pixabay.com www.umbc.edu

www.umbc.edu

1. Function sing() is called

a. Make copy of name variable

b. Pass copy of name variable

57

name =
"Maya" name =

"Maya"

Images from pixabay.com

www.umbc.edu

1. Function sing() is called

a. Make copy of name variable

b. Pass copy of name variable

58

name =
"Maya" name =

"Maya"

Images from pixabay.com

www.umbc.edu

1. Function sing() is called

a. Make copy of name variable

b. Pass copy of name variable

2. Value of variable name is
changed in sing()

a. Variable name does
not change in main()

59

name =
"Maya"

name =
"Maya"
name =
"test1"

Images from pixabay.com

www.umbc.edu60

name =
"Maya"

Images from pixabay.com

name =
"Maya"
name =
"test1"

www.umbc.edu

1. Function sing() is called

a. Make copy of name variable

b. Pass copy of name variable

2. Value of variable name is
changed in sing()

a. Variable name does
not change in main()

3. When sing() exits, that
copy of name disappears

a. And any other variables
local to sing()

www.umbc.edu61

Multiple Parameters

www.umbc.edu

Multiple Parameters

• One thing we haven’t discussed is functions
with multiple parameters

• When a function has more than one
parameter, the formal and actual parameters
are matched up based on position

– First actual parameter becomes the
first formal parameter, etc.

62

www.umbc.edu

Multiple Parameters in sing()

• Let’s add a second parameter to sing() that
will take in the person’s age as well

• And print out their age in the song

def sing(name, age):

happy()

happy()

print("Happy birthday, dear", name, "...")

print("You're", age, "years old now...")

happy()

63

www.umbc.edu

Multiple Parameters in sing()

• What will happen if we use the following call
to the sing() function in main()?

def main():

sing("Maya", 7)

main()

• It will print out:

64

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Maya...

You're 7 years old now...

Happy birthday to you!

www.umbc.edu

Assigning Parameters

• Python is simply assigning the first actual
argument to the first formal argument, etc.

sing("Maya", 7) # function call

def sing(name, age):

function body goes here

65

www.umbc.edu

Parameters Out-of-Order

• What will happen if we use the following call
to the sing() function in main()?

def main():

sing(7, "Maya")

main()

• It will print out:

66

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear 7...

You're Maya years old now...

Happy birthday to you!

www.umbc.edu

Parameters Out-of-Order

• Python isn’t smart enough to figure out
what you meant for your code to do

– It only understands the exact code

• That’s why it matches up actual and formal
parameters based only on their order

67

www.umbc.edu

Announcements

• HW 4 is out on Blackboard now

– All assignments will be available only on
Blackboard until after the due date

– Complete the Academic Integrity Quiz to see it

– Due by Friday (March 3rd) at 8:59:59 PM

• Midterm is in class, March 15th and 16th

– Week before Spring Break

– Survey #1 will be released that week as well

68

